Mode-interaction plays an important role in the dark soliton generation in the microcavity. It is beneficial to the excitation of dark solitons, but also facilitates a variety of dark soliton states. Based on the non-normalized Lugiato–Lefever equation, the evolution of dark soliton in the microcavity with mode-interaction is investigated. By means of mode-interaction, the initial continuous wave (CW) field evolves into a dark soliton gradually, and the spectrum expands from a single mode to a broadband comb. After changing the mode-interaction parameters, the original modes which result in dual circular dark solitons inside the microcavity, are separated from the resonant mode by 2 free spectral ranges (FSR). When the initial field is another feasible pattern of weak white Gaussian noise, the large frequency detuning leads to the amplification of the optical power in the microcavity, and the mode-interaction becomes stronger. Then, multiple dark solitons, which correspond to the spectra with multi-FSR, can be excited by selecting appropriate mode-interaction parameters. In addition, by turning the mode-interaction parameters, the dark soliton number can be regulated, and the comb tooth interval in the spectrum also changes accordingly. Theoretical analysis results are significant for studying the dark soliton in the microcavity with mode-interaction.
Read full abstract