In this paper, we present results of full band structures for two-dimensional piezoelectric phononic crystals with {1–3} connectivity family. The plane-wave-expansion (PWE) method is applied to the theoretical derivation of secular equations of the two polarization modes: a transverse polarization mode and a mixed (longitudinal-transverse) polarization mode. And the band structures of the two modes for both the case of piezoelectric rods embedded in a polymer matrix and the case of polymer rods embedded in a piezoelectric matrix are calculated for two different cross-sections of the rods, i.e., circular and square, considering the practical fabrication of phononic crystals. We reveal the existence of several very large complete band gaps in a material of practical interest such as PZT rods reinforced polythene composite. The effects of shapes and filling fraction of the rods on band gaps are discussed in detail. The existence of these gaps in relation to the physical parameters of the constituent materials involved is studied. Understanding the band structures of piezoelectric phononic crystals can give some information for improvements in the design of acoustic transducers.