High population and a wide range of activities in a megacity lead to large-scale ecological consequences which require the assessment with respect to distinct characteristics of climate, location, fuel consumption, and emission sources. In-depth study of aerosol characteristics was carried out in Moscow, the largest megacity in Europe, during the cold period (autumn and winter) and in spring. PM10 chemical speciation based on carbonaceous matter, water-soluble ions, and elements was carried out to reconstruct the PM mass and evaluate the primary and secondary aerosol contribution. For the whole study period organic matter, mineral dust, and secondary inorganic/organic accounted for 34, 24, and 16 % of PM10 mass, respectively. PM10, OC, and EC approached a maximum in spring and decreased in winter. Mineral dust seasonal fraction increased from spring (17 %) to autumn (32 %), and then decreased in winter (22 %). Secondary inorganic aerosols (SIA) in opposite showed the maximum 27 % in winter. K+ marked the residential biomass burning in the region surrounding a megacity in spring and autumn, agriculture fires in spring. In winter primary aerosol contribution dropped down 56 % while secondary approached practically equal 44 %. Source factors with the relative contributions are quantified, namely city dust (26 %), traffic (23 %), industrial (20 %), biomass burning (12 %), secondary (12 %), and de-icing salt (7 %); they were significantly varying between the cold heating period and springtime. The relevance of sources to meteorological parameters and mass transportation is investigated by using both bivariate polar plots and Lagrangian integrated trajectory (HYSPLIT) model. Trajectory clustering demonstrates regional sources being crucial contributors to PM10 pollution. Aerosol speciation and source apportion factors identify the differences of the Moscow urban background among large European and Asian cities due to northern climate conditions, fast construction, long-range transport from industrial-developing area surrounding a city, regional biomass burning preferably in spring and autumn, and winter road management.
Read full abstract