Abstract
Abstract Estimating cooling and heating energy requirements is an integral part of designing and managing buildings. Further, as buildings are among the largest energy consumers in cities, the estimates are important for formulating effective energy conservation strategies. Where complex hourly simulation models are not favored, such estimates may be derived by simplified methods that are less computationally intensive but still provide results that are reasonably close to those obtained from the more complicated approach. The equivalent full load hours (EFLH) method is a simplified energy estimation method that has recently gained popularity. It offers a straightforward means of evaluating energy efficiency programs. However, to date, easily accessible EFLH data exist only for a very limited number of countries in North America and Europe, but not Asia. This current work provides previously unavailable monthly EFLH data for building cooling and heating in three large Asian cities, viz. Hong Kong, Seoul and Tokyo. To assess the effects of changing temperature over the course of decades on building cooling and heating energy consumption, EFLH data are calculated for three time periods: past (1983–2005), present (2006–2014) and future (2015–2044). The projections for the future time period are based on the climate scenarios Representative Concentration Pathways (RCPs) 4.5 and 8.5 of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report. RCP-4.5 assumes a stabilization of future greenhouse gas (GHG) emissions followed by a reduction, while RCP-8.5 assumes their further increase. From the EFLH data, considering just the effects of ambient temperature changes, it is projected the total energy required to heat and/or cool residential dwellings in Hong Kong, Seoul and Tokyo to increase by 18.3%, 4% and 10.4%, respectively over 62 years from 1983 to 2044 in the case of RCP-4.5, and by 23.3%, 9.3% and 15.8%, respectively in the case of RCP-8.5. This shows that even with future stabilization and reduction of GHG emissions, as per scenario RCP-4.5, the energy needs of the three cities for building heating and cooling combined can be expected to increase over the next few decades. This has significant implications, namely increased demands for additional primary energy, which will result in further GHG emissions. These effects, however, can be controlled with adjustments to the electricity fuel mix of each location, and also by use of more efficient heating, ventilation and air-conditioning (HVAC) devices.
Full Text
Topics from this Paper
Equivalent Full Load Hours
Equivalent Full Load
Large Asian Cities
Full Load Hours
Greenhouse Gas Emissions
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Applied Energy
May 1, 2009
Energy Conversion and Management
Jan 1, 1999
Sustainability
Feb 24, 2022
Nov 1, 2010
Sustainability
Feb 17, 2023
Sustainability
Jan 27, 2022
Journal of Energy Engineering
Mar 1, 2009
Energy Engineering
Nov 1, 2003
Techinical Papers of Annual Meeting the Society of Heating,Air-conditioning and Sanitary Engineers of Japan
Jan 1, 2003
Joule
Oct 1, 2020
Earth System Science Data
Nov 10, 2021
Chemical engineering transactions
Jan 31, 2019
Environmental Research Letters
Mar 1, 2013
Energy
Aug 1, 2013
Applied Energy
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023
Applied Energy
Dec 1, 2023