The emerald ash borer, Agrilus planipennis Fairmaire, an invasive beetle from Asia causing large scale ash (Fraxinus) mortality in North America, has been extremely difficult to rear in the laboratory because of its long life cycle and cryptic nature of immature stages. This lack of effective laboratory-rearing methods has not only hindered research into its biology and ecology, but also mass production of natural enemies for biological control of this invasive pest. Using sticks from the alternate host plant, Fraxinus uhdei (Wenzig) Lingelsh, we characterized the stage-specific development time and growth rate of both emerald ash borer eggs and larvae at different constant temperatures (12-35 degrees C) for the purpose of developing effective laboratory-rearing methods. Results from our study showed that the median time for egg hatching decreased from 20 d at 20 degrees C to 7 d at 35 degrees C, while no emerald ash borer eggs hatched at 12 degrees C. The developmental time for 50% of emerald ash borer larvae advancing to third, fourth, and J-larval stages at 20 degrees C were 8.3, 9.1, and 12.3 wk, respectively, approximately two times longer than at 30 degrees C for the corresponding instars or stages. In contrast to 30 degrees C, however, the development times of emerald ash borer larvae advancing to later instars (from oviposition) were significantly increased at 35 degrees C, indicating adverse effects of this high temperature. The optimal range of ambient temperature to rear emerald ash borer larvae should be between 25-30 degrees C; however, faster rate of egg and larval development should be expected as temperature increases within this range.