This research establishes the existence of weak solution for a Dirichlet boundary value problem involving the p(x)-Laplacian-like operator depending on three real parameters, originated from a capillary phenomena, of the following form: -Δp(x)lu+δ|u|α(x)-2u=μg(x,u)+λf(x,u,∇u)inΩ,u=0on∂Ω,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\displaystyle \\left\\{ \\begin{array}{ll} \\displaystyle -\\Delta ^{l}_{p(x)}u+\\delta \\vert u\\vert ^{\\alpha (x)-2}u=\\mu g(x, u)+\\lambda f(x, u, \ abla u) &{} \\mathrm {i}\\mathrm {n}\\ \\Omega ,\\\\ \\\\ u=0 &{} \\mathrm {o}\\mathrm {n}\\ \\partial \\Omega , \\end{array}\\right. \\end{aligned}$$\\end{document}where Delta ^{l}_{p(x)} is the p(x)-Laplacian-like operator, Omega is a smooth bounded domain in mathbb {R}^{N}, delta ,mu , and lambda are three real parameters, and p(cdot ),alpha (cdot )in C_{+}(overline{Omega }) and g, f are Carathéodory functions. Under suitable nonstandard growth conditions on g and f and using the topological degree for a class of demicontinuous operator of generalized (S_{+}) type and the theory of variable-exponent Sobolev spaces, we establish the existence of a weak solution for the above problem.