The electric field-induced phase transformation behavior in lanthanum-doped lead zirconate titanate ceramics was examined by polarization versus electrical field (P-E) measurements carried out from room temperature to 130 degrees C and under hydrostatic pressures from 20 to 300 MPa. The samples with composition (Pb(1-x)La(x))(Zr(0.90)Ti(0.10))(1-x/4)O(3) [PLZT x/90/10; x = 2,3,4 at%] were prepared by the standard solid-state reaction method. The analysis at room temperature under atmospheric pressure showed that the increase in the lanthanum content induces a transformation from the typical ferroelectric hysteresis, observed for PLZT 2,3/90/10, to double-hysteresis loops, typical of antiferroelectric phases, for PLZT 4/90/10 under a strong electric field. Hydrostatic pressure- induced and temperature-induced ferroelectric (FE) to antiferroelectric (AFE) phase transformations were examined. The measured hysteresis loops indicated that the FE-AFE phase transformation depends on both temperature and hydrostatic pressure for PLZT 3/90/10. This composition, which is in a ferroelectric state at room temperature under atmospheric pressure, can be transformed into the antiferroelectric phase by the application of a hydrostatic pressure of 100 MPa or by increasing the temperature to around 90 degrees C. The PLZT 2/90/10 and 4/90/10 compositions displayed predominantly ferroelectric and antiferroelectric behavior, respectively, over the ranges of temperature and hydrostatic pressure examined in the present study.
Read full abstract