Although the linguistic structure of speech provides valuable communicative information, nonverbal behaviors can offer additional, often disambiguating cues. In particular, being able to see the face and hand movements of a speaker facilitates language comprehension [1]. But how does the brain derive meaningful information from these movements? Mouth movements provide information about phonological aspects of speech [2-3]. In contrast, cospeech gestures display semantic information relevant to the intended message [4-6]. We show that when language comprehension is accompanied by observable face movements, there is strong functional connectivity between areas of cortex involved in motor planning and production and posterior areas thought to mediate phonological aspects of speech perception. In contrast, language comprehension accompanied by cospeech gestures is associated with tuning of and strong functional connectivity between motor planning and production areas and anterior areas thought to mediate semantic aspects of language comprehension. These areas are not tuned to hand and arm movements that are not meaningful. Results suggest that when gestures accompany speech, the motor system works with language comprehension areas to determine the meaning of those gestures. Results also suggest that the cortical networks underlying language comprehension, rather than being fixed, are dynamically organized by the type of contextual information available to listeners during face-to-face communication.
Read full abstract