Abstract Acoustic beamforming array design methods are typically suited for circular and rectangular areas. A comparison of three array design methods is presented in this paper over irregular shaped areas, including L-shapes and arches. Partial-logarithmic spiral arrays that possess their geometric center either at the origin of the array area or the centroid of the irregular shaped area are compared against randomized array designs based on maximum sidelobe level (MSL) parameters and arrays generated using a recently published array design method named the adaptive array reduction method (AARM). In the AARM, a large array is reduced to a smaller array by seeking the removed microphone that possesses the minimum value of the MSL, the main lobe width (MLW), and a lobe distortion term. The AARM is also tested in two practical cases against a partial spiral array design used at the NASA Langley low-turbulence pressure tunnel and a hypothetical rectangular wall case. In both cases, the AARM showed superior performance to the logarithmic spiral arrays in all cases based on MSL and MLW criteria. Of the three methods compared, the AARM best utilizes the full potential array aperture of an irregular area and therefore produces the best MSL, MLW, and lobe distortion values.