Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (La3Ga5SiO14, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (La3Ga5Si0.5Sn0.5O14) and LGGS (La3Ga5Ge0.5Sn0.5O14), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn4+ into the structure, a distorted BO6 octahedron was adjusted by the radius difference between Sn4+ and Si4+/Ge4+, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm2 and LGGS of 813 MW/cm2. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.
Read full abstract