AbstractThis study proposes a collaborative control framework under the mixed traffic environment of connected and automated vehicles and connected human‐driven vehicles, which can simultaneously optimize the signal timing, lane settings, and vehicle trajectories at isolated intersections. Initially, considering the dynamics of traffic demand and incompatible signals, we analyze the vehicle delay of each lane. Based on the delay analysis, the spatiotemporal resource collaborative optimization model of lane setting and signal timing is established to minimize the average delay. Subsequently, in the buffer zone, a graph‐theoretic‐based sorting and platooning model provides a clear and concise representation of the transformation process from the initial state to the target state of vehicles, enabling the platoon formation. Additionally, trajectory optimization is integrated into the collaborative control framework by the optimal control model and car‐following model in the passing zone. Simulation experiments and sensitivity analyses demonstrate the effectiveness of the proposed framework in reducing average vehicle delay, improving fuel consumption, and coping with changing traffic demand at intersections.
Read full abstract