Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity. Clear-cutting has led to reduced numbers of old and large trees, decreased volumes of dead wood of varied decay stages and diameters, and altered physical and chemical compositions of soils. The old-growth boreal forest has been fragmented and considerably reduced. Here, we review short- and long-term (≥50 years) effects of clear-cutting on boreal forest biodiversity in four key substrates: living trees, dead wood, ground and soil. We then assess landscape-level changes (habitat fragmentation and edge effects) on this biodiversity. There is evidence for long-term community changes after clear-cutting for several taxa: epiphytic lichens; saproxylic fungi, bryophytes and insects; epigeic bryophytes; and soil snails, bacteria, and ectomycorrhizal fungi. Long-term declines in species richness were found for saproxylic fungi, bryophytes and true flies. However, for the majority of taxa, long-term effects of clear-cutting are not well understood. On the landscape level, reduced connectivity to old-growth forests has negative effects on several species of fungi, lichens, bryophytes and insects, notably among Red-Listed species. Furthermore, altered microclimate near clear-cut edges negatively affects epiphytic lichens and epigeic arthropods, implying complex effects of habitat fragmentation. Repeated cycles of clear-cutting might pose even stronger pressures on boreal forest biodiversity due to continued fragmentation of old-growth forests and accumulation of extinction debts. Examining the broad effects of forestry on biodiversity across the boreal biome is crucial: (i) to increase our knowledge of long-term and landscape-level effects of former clear-cutting; and (ii) to gain a better understanding of how forestry will affect biodiversity and, subsequently, ecosystem functioning, with repeated cycles of clear-cutting.
Read full abstract