Landscape genetics focuses on evaluating the interaction between landscape features (e.g., mountains, corridors) and environmental variables like temperature or humidity with microevolutionary processes like gene flow, genetic drift or selection. For this, landscape genetics uses different methods of analysis from other areas like population genetics, landscape ecology and spatial statistics, together with some of its own. In the present we explain what is landscpae genetics and, in accordance with the objective of the review, we include an integration of the theoretical basis, assumptions, advantages and limitations of the most frequent methods used in landscape genetics, which we exemplify with diverse case studies. Based on such integration, we propose that the design of analyses in a landscape genetics study should be developed following 5 steps, for each of which we explain its conceptual basis, the most adequate methods and the most commonly software used to evaluate: 1) the genetic variation and structure patterns, 2) the spatially-genetic structure patterns, 3) the gene flow (functional connectivity), 4) the landscape quality (structural connectivity), and 5) the correlation between genetic patterns and landscape features. We end by highlighting the advances we consider are more urgently needed regarding methods of analyses for landscape genetics.
Read full abstract