Abstract The rising demand for thermosetting polymers has resulted in the production of large amounts of industrial waste. Environmental issues due to waste landfills and increased raw material costs for new product development have led to the development of innovative recycling methods. This study focuses on the development of a product (helmet shell) by reinforcing thermosetting polymer waste (TPW) as a filler in a high-density polyethylene (HDPE) matrix. The HDPE and TPW were converted into extrudates using a twin-screw extruder. Then, the extrudate was pelletized to use as raw material for the injection molding machine. The HDPE/TPW composites were fabricated using injection molding. Maleic anhydride-grafted polyethylene was employed as a compatibilizer. In the composite, the TPW volume was reinforced at various weight percentages, ranging from 0 to 35 wt%. The mechanical, thermal, and viscoelastic properties of the composites can be enhanced by uniformly dispersing TPW in the HDPE matrix. However, it is difficult to achieve uniform dispersion at higher TPW volumes owing to the agglomeration effect. According to these findings, the mechanical properties were enhanced by up to 30 wt% addition of TPW. The findings suggest that the proposed composite has sufficient mechanical properties to be suitable for the fabrication of helmet shells.