Local climate zones (LCZs) provide a comprehensive framework to examine surface urban heat islands (SUHIs), but information is lacking on their thermal contributions and spatial effects in different macroclimate cities. A standard framework for distinguishing between the cooling effect and heating effect and spatial effect analysis based on the LCZ scheme was conducted in five distinct macroclimate cities, i.e., Yuanjiang (arid climate), Jinghong (tropical climate), Kunming (subtropical climate), Zhaotong (temperate climate), and Shangri-La (alpine climate). The results indicated that (1) built-up zones presented heating effects in Jinghong and Shangri-La, but opposite results were observed in Yuanjiang and Zhaotong. (2) The thermal contributions of natural zones with dense trees (LCZAs) and waterbodies (LCZGs) showed cooling effects in the five cities regardless of season. (3) The spatial effect of heating LCZs on land surface temperature (LST) was more significant than that of cooling LCZs in Jinghong and Shangri-La, but the opposite results occurred in Yuanjiang and Kunming. Moreover, the spatial effect was lower in Zhaotong than in other cities. (4) Lower LST differences between natural zones and built-up zones in winter than in summer decreased the spatial effects. In summary, the thermal contributions of LCZs and their spatial heating/cooling effects were different among five distinct climate backgrounds, which implies that targeted measures must be used in different macroclimates.
Read full abstract