Known as the “lung of the planet”, the Amazon rainforest produces more than 20% of the Earth’s oxygen. Once a carbon pool for mitigating climate change, the Brazilian Amazônia Biome recently has become a significant carbon emitter due to increasingly frequent wildfires. Therefore, it is of crucial importance for authorities to understand wildfire dynamics to manage them safely and effectively. This study incorporated remote sensing and spatial statistics to study both the spatial distribution of wildfires during 2019 and their relationships to 15 environmental and anthropogenic factors. First, broad-scale spatial patterns of wildfire occurrence were explored using kernel density estimation, Moran’s I, Getis-Ord Gi*, and optimized hot spot analysis (OHSA). Second, the relationships between wildfire occurrence and the environmental and anthropogenic factors were explored using several regression models, including Ordinary Least Squares (OLS), global (quasi) Poisson, Geographically-weighted Gaussian Regression (GWGR), and Geographically-weighted Poisson Regression (GWPR). The spatial analysis results indicate that wildfires exhibited pronounced regional differences in spatial patterns in the vast and heterogeneous territory of the Amazônia Biome. The GWPR model outperformed the other regression models and explained the distribution and frequency of wildfires in the Amazônia Biome as a function of topographic, meteorologic, and environmental variables. Environmental factors like elevation, slope, relative humidity, and temperature were significant factors in explaining fire frequency in localized hotspots, while factors related to deforestation (forest loss, forest fragmentation measures, agriculture) explained wildfire activity over much of the region. Therefore, this study could improve a comprehensive study on, and understanding of, wildfire patterns and spatial variation in the target areas to support agencies as they prepare and plan for wildfire and land management activities in the Amazônia Biome.
Read full abstract