Since 1997, an emergent fungal disease named lethargic crab disease (LCD) has decimated stocks of the edible mangrove land crab Ucides cordatus (Linnaeus, 1763) (Brachyura: Ocypodidae) along the Brazilian coast, threatening the mangrove ecosystem and causing socioeconomic impacts. Evidence from a variety of sources suggests that the black yeast Exophiala cancerae (Herpotrichiellaceae, Chaetothyriales) has been responsible for such epizootic events. Based on the spatiotemporal patterns of the LCD outbreaks, the well-established surface ocean currents, and the range of ecological traits of Exophiala spp., a marine dispersal hypothesis may be proposed. Using in vitro experiments, we tested the survival and growth of E. cancerae CBS 120420 in a broad combination of salinities, temperatures, and exposure times. While variation in salinity did not significantly affect the growth of colony-forming units (CFUs) (P>0.05), long exposure times visibly influenced an increase in CFUs growth (P<0.05). However, higher temperature (30°C) caused a reduction of about 1.2-fold in CFUs growth (P<0.05). This result suggests that sea surface temperatures either above or below the optimum growth range of E. cancerae could play a key role in the apparent north-south limits in the geographical distribution of LCD outbreaks. In light of our results, we conclude that a fundamental step toward the understanding of LCD epidemiological dynamics should comprise a systematic screening of E. cancerae in estuarine and coastal waters.
Read full abstract