A general limitation in assessing the accuracy of land cover mapping is the availability of ground truth data. At sites where ground truth is not available, potentially inaccurate proxy datasets are used for sub-field-scale resolution investigations at large spatial scales, i.e., in the Contiguous United States. The USDA/NASS Cropland Data Layer (CDL) is a popular agricultural land cover dataset due to its high accuracy (>80%), resolution (30 m), and inclusions of many land cover and crop types. However, because the CDL is derived from satellite imagery and has resulting uncertainties, comparisons to available in situ data are necessary for verifying classification performance. This study compares the cropland mapping accuracies (crop/non-crop) of an optical approach (CDL) and the radar-based crop area (CA) approach used for the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) L- and S-band mission but using Sentinel-1 C-band data. CDL and CA performance are compared to ground truth data that includes 54 agricultural production and research fields located at USDA's Beltsville Agricultural Research Center (BARC) in Maryland, USA. We also evaluate non-crop mapping accuracy using twenty-six built-up and thirteen forest sites at BARC. The results show that the CDL and CA have a good pixel-wise agreement with one another (87%). However, the CA is notably more accurate compared to ground truth data than the CDL. The 2017-2021 mean accuracies for the CDL and CA, respectively, are 77% and 96% for crop, 100% and 94% for built-up, and 100% and 100% for forest, yielding an overall accuracy of 86% for the CDL and 96% for CA. This difference mainly stems from the CDL under-detecting crop cover at BARC, especially in 2017 and 2018. We also note that annual accuracy levels varied less for the CA (91-98%) than for the CDL (79-93%). This study demonstrates that a computationally inexpensive radar-based cropland mapping approach can also give accurate results over complex landscapes with accuracies similar to or better than optical approaches.
Read full abstract