Nonylphenol (NP) is considered a major contaminant that must be removed to enable safe and environmentally friendly land application of sewage sludge. Phytoremediation is a technology in which plants are used to remove and/or stabilize organic and inorganic contaminants present in the soil, municipal wastewater, and sewage sludge. In this study, a 391-d large pot experiment was conducted to remove NP from sewage sludge by phytoremediation using Zea mays L. 'Yunshi-5', Lolium perenne L., and co-cropping of the two plants. The fate of NP in the soil under the sewage sludge was assessed at the same time. At the end of the experiment, the NP levels in sludge from the various treatments were as follows: control (38.60%)>L. perenne (31.27%)>Z. mays (16.25%)>co-cropping (15.28%). Degradation followed an availability-adjusted first-order kinetics with a decreasing order of half-lives as follows: control (88.2 d)>L. perenne (87.3 d)>co-cropping (66.2 d)>Z. mays (59.1 d). The results indicated that Z. mays and co-cropping could both degrade NP. The concentrations of NP in tissues of different plants differed significantly. The mean bioconcentration factors for Z. mays and L. perenne were 0.16 and 3.69, respectively. Direct removal of NP from sewage sludge by plant uptake was negligible, as was downward movement of NP in the system. Moreover, NP was not detected in soils in any treatments at harvest.
Read full abstract