The target in this survey is to investigate deformations of laminates shells (DLS), due to asymmetric and axisymmetric loads, including several other loadings using N-T shell equations. We point out here, the contribution of the metric change in thickness for the analysis of static and linear behavior of laminated composite shells. To achieve this objective, we've applied N-T's shells equations on the same monolayer laminate composite shell and derive the law of MBLS. The macrostructure is analyzed under static loads and implemented using low order curved shell finite elements with shifted Lagrange (CSFE-sh). We tested this element on benchmarks found within the literature. The analysis of cylindrical and spherical shells subjected to uniform sinusoidal pressures and asymmetric pressures reveals excellent accuracy compared to others. The results found without any correction factor were compared with those obtained by the analytical method and other finite element models.