Salmonella Paratyphi A, the pathogen of paratyphoid A accounts for an obviously growing proportion of cases in many areas. Therefore, development of specific paratyphoid A vaccines is needed. In the present study, the poxA gene of Salmonella Paratyphi A, encoding the aminoacyl-tRNA synthetase, was deleted successfully by the method of lambda Red recombination system, the resulting strain, ΔpoxA was characterized in respect of growth, adhesion and invasion, virulence, immunogenicity and protective efficacy. It was found that the growth of the ΔpoxA strain was significantly delayed compared with the wild type strain, the mutant ΔpoxA was less invasive to Caco-2 BBE epithelioid cells and THP-1 macrophages than the wild type strain, strain ΔpoxA was attenuated at least 1000-fold in mice, significant immune response and efficient protection were provided by the mutant ΔpoxA after oral immunization. It is concluded that the Salmonella Paratyphi A poxA deletion mutant ΔpoxA can be used as a live oral vaccine candidate against paratyphoid A.