ABSTRACT Recently, a novel idea has been proposed to use a spacecraft orbiting closely around the L4 or L5 Lagrangian points of the Earth–Moon system as a vantage location for astronomical observations under unique and advantageous conditions, e.g. to investigate the Solar corona or Kordylewski clouds. In this paper, we explore the scientific advantages of this configuration to observe lunar occultations. By using simulations based on actual orbital parameters and detector performance, we find that even a telescope as small as 10 cm in a L4 orbit would enable better light-curve sampling and higher angular resolution than from ground, and open up at the same time new spectral windows such as e.g. in the UV. We focus in particular on angular diameter measurements, which we find would be possible at the 100 $\mu$as level even at magnitudes normally considered faint in the context of ground-based LOs. Considerable benefits would also be afforded in the area of small separation binary objects, not just in terms of angular resolution but also by the capability of L4-based observations to repeat an LO scan of a source at multiple different position angles. Additional science cases would be made possible by the high time resolution intrinsic to the LO technique and the access to UV wavelengths. On-board data pipeline codes already exist, greatly simplifying the automatic pre-processing and the data transfer requirements.
Read full abstract