Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solution of a linear Ranking SVM model can be written as a linear combination of the preference pairs, i.e., w = Σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(i,j)</sub> α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> -x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> ), where α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> denotes the Lagrange parameters associated with each preference pair (i,j). It is observed that there exist obvious interactions among the document pairs because two preference pairs could share a same document as their items, e.g., preference pairs (d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> ,d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) and (d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> ,d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) share the document d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> . Thus it is natural to ask if there also exist interactions over the model parameters α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> , which may be leveraged to construct better ranking models. This paper aims to answer the question. We empirically found that there exists a low-rank structure over the rearranged Ranking SVM model parameters α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> , which indicates that the interactions do exist. Based on the discovery, we made modifications on the original Ranking SVM model by explicitly applying low-rank constraints to the Lagrange parameters, achieving two novel algorithms called Factorized Ranking SVM and Regularized Ranking SVM, respectively. Specifically, in Factorized Ranking SVM each parameter α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> is decomposed as a product of two low-dimensional vectors, i.e., α <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ij</sub> =〈v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> ,v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> 〉, where vectors v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> and v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> correspond to document i and j, respectively; In Regularized Ranking SVM, a nuclear norm is applied to the rearranged parameters matrix for controlling its rank. Experimental results on three LETOR datasets show that both of the proposed methods can outperform state-of-the-art learning to rank models including the conventional Ranking SVM.