Abstract

AbstractIn this contribution a layered shell element for the computation of laminated structures is proposed. The shell kinematic is based on the Reissner‐Mindlin theory with an inextensible director field. Further a multi‐field functional is introduced including the global shell equations and additional Euler‐Lagrange equations. These Euler‐Lagrange equations enforce the correct shape of warping through the thickness and lead to continuous transverse shear stresses at layer boundaries This leads to a mixed hybrid shell element, after elimination of stresses, warping and Lagrange parameters on element level. The resulting shell element has the usual 5 or 6 degrees of freedom per node, making it possible to apply this element to complex geometrical structures. An extension of the element to compute stresses in thickness direction is shown, in order to estimate and predict interlaminar failure. The computed results show good agreement with 3D solid shell models. Numerical examples for the computation of interlaminar shear and thickness normal stresses are shown and compared to results of 3D elements. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.