Ladybeetles (Coleoptera: Coccinellidae) are ubiquitous predators which play an important role in suppressing pest insects. In North America, the coccinellid community is increasingly dominated by exotic species, and the abundance of some native species has declined dramatically since the 1980s. Several hypotheses have been proposed to describe the mechanism of invasion coupled with native species declines, e.g. vacant niche exploitation, intraguild predation, competitive exploitation and habitat compression. We analyze a 24-year dataset of coccinellid community structure in southwestern Michigan to elucidate the most likely mechanism(s) of native coccinellid decline and implications for their conservation. Correlation analyses indicated that impact of exotic species on native coccinellids varies with their degree of interaction. Although several native species were observed to be in numerical decline, only Adalia bipunctata and Coleomegilla maculata had declines that were statistically significant. The magnitude of decline in these two species varied with the degree of dietary overlap with invaders, thus their decline is most likely driven by competitive exploitation. Habitat use patterns by some native species (A. bipunctata and Coccinella trifasciata) changed during years when the exotic Harmonia axyridis reached high numbers, lending support to the habitat compression hypothesis, where native species survive in ancestral (i.e. natural or semi-natural) habitats when invaders dominate cultivated habitats. Coccinellid communities occurring in semi-natural forested habitats were unique in both composition and variability from those occurring in cultivated habitats. Such semi-natural habitats can act as refuges for native coccinellids and may play a role in maintaining the functional resilience of coccinellid communities.