Based on recent success in using modified RNA in clinical applications, we tested the safety, feasibility, and efficacy of direct delivery of citrate-saline-formulated mRNA into an hibernating ischemic heart muscle using an electromechanical mapping and injection catheter system (NOGA/Myostar) in a porcine chronic myocardial ischemia model. Chronic ischemia was induced in domestic pigs (n = 24) using a bottleneck stent placed in the left anterior descending coronary artery. Low (1 mg) and high (7.5 mg) doses of citrate-saline-formulated vascular endothelial growth factor (VEGF)-A165 mRNA were administered in the study. LacZ mRNA and citrate-saline buffer were used as controls. Ten intramyocardial injections (200 μL each) of the mRNAs or citrate-saline buffer were given endovascularly into the hibernating ischemic myocardium using the NOGA catheter. Positron emission tomography 15O-radiowater imaging was performed 7 days after the induction of ischemia and 28 days after the mRNA delivery to measure quantitative myocardial blood perfusion. Coronary angiography, left ventricular function measurements, and clinical chemistry were obtained at each time point. Thirty-five days after the mRNA transfers, pigs were sacrificed, and infarct size and general histology were analyzed. LacZ mRNA pigs were sacrificed 24 h after the transduction. Citrate-saline-formulated mRNA delivery into the ischemic myocardium with endovascular injection catheter did not lead to meaningful transduction with the translation of VEGF-A165, nor therapeutic effects in the heart. VEGF-A165 mRNA showed no statistically significant improvements in left ventricular ejection fraction (LVEF), cardiac output, myocardial perfusion, infarct size, collateral growth, or capillary area in the study groups. However, there was a trend in the high-dose group toward an improved LVEF and cardiac output at rest. No significant adverse effects were observed. In conclusion, the NOGA/Myostar injection catheter system is ineffective in delivering citrate-saline-formulated mRNAs into the heart muscle with the doses and methods used in a porcine chronic myocardial ischemia model.