Methoxyphenols are released in abundance from lignin pyrolysis during biomass burning. Apart from being atmospheric brown carbon components that absorb solar radiation and warm the climate, methoxyphenols also undergo photoreaction in the atmospheric aqueous phase and form secondary organic aerosols (aqSOA). While efforts have been devoted to understanding chemical evolutions and climate-related optical properties of aqSOA, their potential health impacts also require timely investigations. Herein, we used the dithiothreitol (DTT) assay to investigate oxidative potential of the aqSOA formed during the 8-hr aqueous-phase photoreaction of two typical methoxyphenols, vanillin and vanillic acid, under pH 2 or 8, and with or without ammonia nitrate. The highest DTT consumption rates (RDTT) were observed for vanillin aqSOA formed in the presence of ammonia nitrate and at pH 8. At pH 2, although RDTT increased rapidly during early photoreaction, it reduced after prolonged illumination. High resolution mass spectrometry and linear regression analyses were performed to correlate the photoreaction products with the observed RDTT. Results showed that three products that present quinone, lactone and dimer structures, respectively, should be the key drivers of elevated RDTT for aqSOA formed during photoreaction of vanillin and vanillic acid alone, whereas it shifted to the nitrogen-containing aromatic compounds during their photoreaction with ammonia nitrate. Our results have revealed the role of nitrogen-containing aromatic compounds in the oxidative potential and health effects of aqSOA from biomass burning, which was rarely recognized before and warrants immediate assessments.
Read full abstract