Dioxins, emanating from the waste incineration, constitutes an organic pollutant that poses considerable risks to the human health and environment. In this study, the corn straw char (CSC) and oak char (OC) derived from the electric heating or microwave gasification, and the coconut-shell activated carbon (AC) are employed as absorbents for the adsorption of dibenzofuran (DBF, dioxins model compound). Characterization techniques, including BET, X-ray CT, SEM-EDS, FTIR, and XPS, are performed to identify the DBF adsorption mechanism on the biochar. The results show that the biochar prepared by the microwave gasification has a more well-developed pore structure than that of the electric heating gasification. The higher porosity (16.94 %) and lower mineral content (1.75 %) are responsible for the effective adsorption of DBF onto AC. The adsorption capacity of CSC is proportional to the modified concentration of KOH. It is mainly ascribed to the decrement of carboxyl and lactone groups and the enhancement of alkaline functional groups on the biochar surface, which augments the hydrophobicity and π–π electron donor–acceptor (EDA) interaction. Instead, DBF adsorption capacity on the biochar is adversely affected by the HNO3 modification. For all biochar samples, the corresponding maximum adsorption ratios are AC (87.11 %) > KOH-modified CSC (77.14 %) > unmodified CSC (49.11 %) > unmodified OC (39.70 %) > HNO3-modified CSC (36.09 %). The adsorption mechanisms of DBF on the gasified biochar encompass the pore filling, hydrophobicity, and π–π EDA interaction. A desirable adsorption capacity of DBF on the biochar prepared by the microwave gasification is attainable through augmenting the specific surface area while diminishing the oxygen-containing groups of the surface simultaneously.