Analyses in mice suggest that dietary salt increases blood pressure partly by affecting some of the microbes that inhabit the gut. The implications of this work for hypertension warrant further study in humans. See Article p.585 The role of the gut microbiota in human disease is becoming increasingly recognized. In this study, Dominik Muller and colleagues report that a diet high in salt alters the composition of the gut microbiota in mice, causing pronounced depletion of the commensal Lactobacillus murinus and reduced production of indole metabolites. Previous work has suggested that a high salt diet leads to the generation of pathogenic T helper 17 (TH17) cells, which have been linked to hypertension and autoimmunity. The authors show that treatment of mice on a high salt diet with L. murinus prevents salt-induced aggravation of actively induced autoimmune encephalomyelitis and salt-sensitive hypertension, through the suppression of TH17 cells. In a pilot study in a small number of humans, the authors also show that high-salt challenge induces an increase in blood pressure and TH17 cells, associated with a reduction in Lactobacillus in the gut. However, future work is required to determine whether the findings for mice are translatable to humans.
Read full abstract