The poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) (PLA) films have been widely used due to their biological degradability and excellent comprehensive properties. However, the reports regarding biodegradable PLA/PBAT films are rather scarce. In this work, systematical investigations of biaxially stretched PLA/PBAT films were performed. Compared with unstretched films, the PLA/PBAT 75/25 films with the stretching ratio of 5 × 1 exhibited an improvement on the crystallinity of PLA from 6 % to 58.6 %. According to 2D-WAXS results, the orientation of the α crystal in the MD increased with the increase of the stretching ratio. The stretched films showed favorable barrier properties. The oxygen permeability (OP) of 2 × 2 PLA/PBAT 75/25 films shows a decrement of 22 % compared with that of the unstretched films. Interestingly, the uniaxially stretched PLA/PBAT 75/25 films exhibits increased surface roughness (Ra) for 3 × 1 film whereas decreased Ra for the 5 × 1 film, which could be related to the phase separation under stretching. The tensile strength in the machine direction (MD) of the PLA/PBAT 75/25 films was improved up to 51.6 MPa for 5 × 1 film, which is 45 % higher than that of unstretched counterpart. The stretched films exhibit excellent mechanical and barrier properties, which could be utilized in packaging industry with high potential.
Read full abstract