AbstractMacroevolutionary and macroecological studies must account for biases in the fossil record, especially when questions concern the relative abundance and diversity of taxa that differ in preservation and sampling potential. Using Cenozoic marine mollusks from a temperate setting (New Zealand), we find that much of the long-term temporal variation in gastropod versus bivalve occurrences is correlated with the stage-level sampling probabilities of aragonitic versus calcitic taxa. Average sampling probabilities are higher for calcitic species, but this contrast is time-varying in a predictable way, being concentrated in stages with widespread carbonate deposition.To understand these results fully, we link them with analyses at the level of individual point occurrences. Doing so reveals that aragonite bias is effectively absent in terrigenous clastic sediments. In limestones, by contrast, calcitic species have at least twice the odds of sampling as aragonitic species. This result is most pronounced during times of widespread carbonate deposition, where the difference in the per-collection odds of sampling species is a factor of eight. During carbonate-rich intervals, calcitic taxa also have higher odds of sampling in clastics. At first glance this result may suggest simple preservational bias against aragonite. However, comparing relative odds of aragonitic versus calcitic sampling with absolute sampling rates shows that the positive calcite bias during carbonate-rich times reflects higher than average occurrence rates for calcitic taxa (rather than lower rates for aragonitic taxa) and that the negative aragonite bias in limestones reflects lower than average occurrence rates for aragonitic taxa (rather than higher rates for calcitic taxa).Our results therefore indicate a time-varying interplay of two main factors: (1) taphonomic loss of aragonitic species in carbonate sediments, with no substantial bias in terrigenous clastics; and (2) an ecological preference of calcitic taxa for environments characteristic of periods with pervasive carbonate deposition, irrespective of lithology per se.