The vascular organization and endothelial cell specialization of the air-breathing organs of Anabas testudineus were examined by light and scanning electron microscopy of fixed tissue and vascular corrosion replicas. The vessels supplying blood to the lining of paired suprabranchial chambers and the plicated labyrinthine organs within the chambers are tripartite, having a median artery and paired, lateral veins. Hundreds of respiratory islets, the functional units of gas exchange, cover the surfaces of both the chamber and labyrinthine organ. A median islet artery supplies the central aspect of each islet and gives rise to numerous short arterioles from which the transverse channels are formed. Transverse channels are parallel capillary-sized vessels that extend in two rows away from the medial arterioles and drain laterally into one of two lateral islet veins. Basally situated single rows of endothelial cells lining the transverse channels form thick, evaginated, tongue-like cytoplasmic processes that project freely into the lumen from the tissue side of the channel. Other thin, septate, cytoplasmic extensions of the same cells form valve-like septa that extend across the channel. Both the septa and tongue-like processes appear to direct the red blood cells to the epithelial side of the channel and thus decrease the diffusion distance between the air and red cell. A large sinusoidal space lies under the transverse channels and may support the channels and even elevate them during increased oxygen demand. The epithelium covering the transverse channels is smooth, which enhances air convection and minimizes unstirred layer effects. The epithelium between the channels contains microvilli that may serve to trap bacteria or particulates and to humidify the air chambers.
Read full abstract