Pleistocene glacial-estuarine sediment deposited in an intertidal environment of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared stimulated and thermoluminescence (IRSL and TL) techniques. Analysis of modern and14C-dated Holocene tide-flat mud demonstrates that the bulk of sediment in this environment is reset by solar radiation, thereby lending confidence to ages obtained from similar Pleistocene deposits by luminescence techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of <10,000 yr. The ages of tide-flat mud of the Nushagak Formation, derived from the Ahklun Mountains to the northwest of Bristol Bay, and of Halfmoon Bay drift, derived from the Alaska Peninsula to the southeast, suggest contemporaneous glacial-estuarine deposition related to independent glacial source areas about 75,000–80,000 yr ago. This age is consistent with other geochronological data that indicate a pre-late-Wisconsin and post-substage-5e age, including nonfinite14C ages, a lack of interglacial indicators, and Old Crow tephra (∼140,000 yr) atop the drift, normal paleomagnetic inclinations, and amino acid (isoleucine) epimerization ratios (aIle/Ile). AIle/Ile ratios inPortlandia arctica(0.052 ± 0.003) from a marine-lag horizon at South Naknek beach, which separates Halfmoon Bay drift above from older glacial-estuarine drift below, are only slightly higher than inMya truncata(0.041 ± 0.007) from last-interglacial Pelukian deposits at Nome. As laboratory heating experiments show that the two genera epimerize at similar rates, these data imply correlation of the marine lag at South Naknek beach with Pelukian deposits. Hence, glaciers on the Alaska Peninsula experienced major pre-late-Wisconsin advances both before and after the last interglaciation. Shells reworked into Halfmoon Bay drift yield aIle/Ile ratios of 0.028 ± 0.005 forPortlandiaat Second Point and 0.027 ± 0.001 forHiatella arcticaat Etolin Point. Together with assumptions about the postdepositional temperature history, these ratios indicate that the shells are at least 55,000 yr, and probably closer to ∼90,000 yr, although the uncertainty in this age estimate is broad. The amino acid and luminescence data converge on an age between about 75,000, and 90,000 yr, late during oxygen-isotope stage 5, for a major ice advance far beyond late-Wisconsin limits.