Abstract The effects of individual and combined additions of cerium (Ce), lanthanum (La), and strontium (Sr) on the eutectic modification and solidification characteristics of an Al – Si – Mg (A356) aluminum alloy were investigated using optical microscopy and thermal analysis techniques. Addition of Ce, La, and Sr resulted in different depression levels of the eutectic nucleation temperature and eutectic growth undercooling, generating modified eutectic structures exhibiting different levels of modification. Microstructural results showed that the best modification levels using individual additions were achieved by Sr which produced a fine fibrous eutectic structure, followed by La, which produced a refined lamellar structure, with Ce providing the lowest level of modification. On the other hand, a combined addition of Ce and Sr provided the highest modification level, with the production of a very fine fibrous eutectic silicon structure. In general, the addition of Sr helped to further increase the refinement obtained in the alloys containing La or Ce + La additions. In the latter alloy, the main intermetallic phases observed were La(Al,Si)2 and Al20(La,Ce)Ti2Si. The improved modification levels were found to be proportional to the depression in the eutectic nucleation temperature and the eutectic growth undercooling. A high cooling rate also improved the modification level by at least one level.
Read full abstract