The paper describes the study of radiation-induced attenuation (RIA) spectra in reactor-irradiated single mode at λ=1.55 μm optical fibers (OFs) with differente high-temperature coatings (polyimyde, aluminum and copper). The OFs were previously irradiated up to fast neutron fluence 1.8·1020 n/cm2 and gamma dose 2.32 GGy. After three years of storage at room temperature (RT), the RIA spectra were examined in the range of 650–1700 nm. All RIA mechanisms acting in this spectral range were identified: a tail of non-bridging oxygen hole center, a long-wavelength RIA (LWRIA) band with a maximum at λ > 1600 nm, unstructured “grey” loss due to coating microbendings or damage, and an absorption band peaking at 930 nm (E=1.33 eV). It was found out that the LWRIA can be significantly annealed at RT in polyimide-coated OFs. Grey loss were found to be more stable than those causing LWRIA.The LWRIA arising in reactor- and gamma-irradiated OFs have close thermal stability at RT and exhibit a similar shapes, which close to the absorption band of self-trapped holes (STH). This suggests a STH-like nature of the LWRIA.
Read full abstract