Abstract

In this work, defect absorption spectra for defects characteristic of hydrogenated amorphous silicon are theoretically studied. It is shown that in order to determine defect absorption spectra using the Kubo-Greenwood formula, the indefinite integral in this formula must be written in a certain form. It was discovered that electronic transitions involving defect states are divided into two parts depending on the energy of absorbed photons. The values of the partial defect absorption spectrum at low energies of absorbed photons have almost no effect on the overall defect absorption spectrum. It has been established that the main role in determining the defect absorption spectrum is played by partial spectra determined by optical transitions of electrons between allowed bands and defects. It is shown that with a power-law distribution of the density of electronic states in allowed bands, the spectra of optical transitions between them and defects do not depend on the value of this power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call