Homonuclear 1H NMR (nuclear magnetic resonance) spectra such as the [1H,1H]-NOESY (Nuclear Overhauser Enhancement spectroscopy) are essential for biomolecular structural biology. However, the spectrum contains hundreds to thousands of cross peaks meaning that within approximately 100 ppm2 there is significant signal overlap. Spectral resolution is thus a limiting factor for data interpretation for dynamics and structure elucidation. Acquiring the spectra at higher magnetic fields such as at a 1.2 GHz 1H frequency helps to reduce spectral crowding, since resolution scales proportionally to the magnetic field strength. Here, we show that the linewidths' of cross peaks in [1H,1H]-NOESY and [1H,1H]-TOCSY spectra can be further reduced by a factor of 2-3 in each dimension by super-resolution spectroscopy. In the indirect dimension a composite exponential-cosine weighted number of scans along the time increments are recorded and digitally smoothened by a window function. Furthermore, measurement time saving by reduced-acquisition super-resolution (RASR) is introduced. Application to the 20 kDa protein KRAS shows that highly resolved NMR spectra suitable for automated analysis can be acquired within less than 3 hours. The method opens an avenue towards automated chemical shift assignment, dynamics and structure determination of unlabeled small and medium size proteins within 24 hours.