This study aimed to investigate the influence of galvanized steel coupons on black tea kombucha fermentation. As a secondary objective, the corrosion activity of the fermented medium at different stages of fermentation was investigated. The results revealed significant interactions among microorganisms, the metal, and the fermented medium. On one hand, mass loss measurement, scanning electron microscopy (SEM) analysis, and released zinc and iron ion analysis showed the deterioration of galvanized steel coupons. On the other hand, HPLC-RI analysis showed that the presence of steel coupons improved the kinetics of fermentation. The chemical composition and bioactivity of kombucha were also influenced by the presence of galvanized steel. The results showed the detection of eleven phenolic compounds by HPLC-DAD, including trihydroxyethylrutin, methyl 3,5-dihydroxybenzoate, and ethyl 4-hydroxy-3-cinamate, which were found only in kombucha in the presence of galvanized steel (K+GS). In addition, a total of 53 volatile compounds were detected by GC-MS before and after derivatization, including eleven constituents identified for the first time in K+GS. Concerning antioxidant activity, a higher percentage of inhibition against the DPPH radical was attributed to the ethyl acetate extract found in K+GS (IC50 = 8.6 µg/mL), which could suggest the formation of inhibitors. However, according to the electrochemical findings, the corrosion current density increased threefold during the fermentation process compared to acidified black tea, indicating that corrosion activity was promoted in the kombucha medium and suggesting several competing phenomena between corrosion and inhibition.