Within knowledge representation in artificial intelligence, a first-order ontology is a theory in first-order logic that axiomatizes the concepts in some domain. Ontology verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism and determine whether or not these models are equivalent to the intended models of the ontology. Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. In the first half of this article, we review the different metalogical relationships between first-order theories and identify which relationship is needed for ontology verification. In particular, we will demonstrate that the notion of logical synonymy is needed to specify a representation theorem for the class of models of one first-order ontology with respect to another. In the second half of the article, we discuss the notion of reducible theories and show we can specify representation theorems by which models are constructed by amalgamating models of the constituent ontologies.
Read full abstract