Primary cultures of adult mouse hepatocytes are shown here to reexpress differentiated hepatocyte features following treatment with 2% DMSO and 10(-7) M glucagon. To examine the roles of gap junctional communication during hepatocyte growth and differentiation, we have compared treated and untreated hepatocytes from connexin (Cx)32-deficient [Cx32 knockout (KO)] and wild-type mice. In untreated cultures, DNA replication of Cx32 KO hepatocytes was markedly higher than of wild types. Although Cx26 mRNA levels remained high at all time points in wild-type and Cx32 KO hepatocytes, Cx32 mRNA and protein in wild-type hepatocytes underwent a marked decline, which recovered in 10-day treated cultures. Increased levels of Cx26 protein and junctional conductance were observed in Cx32 KO hepatocytes at 96 h in culture, a time when cell growth rate was high. Treatment with DMSO/glucagon highly reinduced Cx26 expression in Cx32 KO hepatocytes, and such treatment reinduced expression of both Cx32 and Cx26 expression in wild types. Dye transfer was not observed following Lucifer yellow injection into DMSO/glucagon-treated Cx32 KO hepatocytes, whereas the spread was extensive in wild types. Nevertheless, high junctional conductance values were observed in treated cells from both genotypes. These studies provide a method by which the differentiated phenotype can be obtained in cultured mouse hepatocytes and provide in vitro evidence that expression of gap junctions formed of Cx32 are involved in the regulation of growth of mouse hepatocytes.