Knee ligament sprains are common during change-of-direction (COD) maneuvers in multidirectional team sports. This study aimed to compare the effects of an 8-week injury prevention exercise program containing COD-specific exercises and a similar program containing linear sprint exercises on injury- and performance-related variables during a 135° COD task. We hypothesized that the COD-specific training would lead to (H1) stronger reductions in biomechanical variables associated with anterior cruciate ligament (ACL) injury risk during COD, i.e. knee abduction moment and angle, hip internal rotation angle and lateral trunk lean, and (H2) more effective improvements in COD performance according to the COD completion time, executed angle, ground contact time, and approach speed. Twenty-two sports science students (40% female) completed biomechanical assessments of COD movement strategies before and after participating in two supervised 25-min training sessions per week over 8 weeks. We observed significant ‘training x group’ interaction effects in support of H1: the COD-specific training but not the linear sprint training led to reduced peak knee abduction moments (interaction, p = 0.027), initial knee abduction (interaction, p < 0.001), and initial lateral trunk lean angles (interaction, p < 0.001) compared to baseline. Although the COD-specific training resulted in sharper executed angles (interaction, p < 0.001), the sprint-specific training group showed reduced COD completion (interaction, p = 0.037) and ground contact times (interaction, p < 0.001). In conclusion, a combination of generic and COD-specific injury prevention training resulted in COD technique adaptations that can help to avoid ACL injury-prone COD movements but may negatively affect COD speed.