Meniscal injuries are a leading cause of knee dysfunction and are commonly treated with partial meniscectomy, which often leads to altered joint biomechanics and early-onset osteoarthritis. Current meniscal implants and scaffolds fail to address patient-specific anatomical variations, particularly for partial defects, limiting their clinical effectiveness. This pioneering study introduces the first methodology specifically designed to develop patient-specific scaffolds tailored to partial meniscal injuries, representing a groundbreaking advancement in the field. Using medical imaging and computer-aided design, precise 3D models of injured and intact menisci were created, leveraging the contralateral meniscus as a reference. Scaffolds were fabricated through extrusion-based 3D printing, enabling accurate replication of the defect geometry. Ex vivo analyses demonstrated the scaffolds’ adaptability to diverse defect types and their morphological fidelity to the native tissue. Quantitative assessments revealed minimal deviations, underscoring the precision of the proposed method. This innovative methodology provides a robust framework for developing anatomically precise scaffolds, paving the way for personalized regenerative strategies. Beyond its current application, it holds potential for creating cell-laden scaffolds, acellular implants, or permanent prosthetic devices, addressing critical challenges in meniscal repair and advancing patient-specific tissue engineering.
Read full abstract