This study investigates the electrochemical treatment of kitchen wastewater (KW) using a PbO₂-coated graphite (G-PbO₂) electrode prepared via ultrasound-assisted electrochemical deposition. The G-PbO2 electrode was characterised through various techniques, including X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), confirming the successful deposition of PbO₂ and enhanced catalytic activity. Under optimal conditions (current density 0.75 Adm−2, electrolyte concentration 1.5 gL-1, electrode distance 2 cm, and pH 3), the G-PbO₂ electrode achieved a 94 % COD reduction with an energy consumption of 0.002 kWh gCOD−1. These results highlight the superior performance of the electrode in COD removal, accompanied by low energy consumption.