School classrooms are potentially important micro-environments for childhood exposures owing to the large amount of time children spend in these locations. While a number of airborne contaminants may be present in schools, to date few studies have examined ultrafine particle (0.02–1 μm) (UFP) levels in classrooms. In this study, our objective was to characterize UFP counts (cm −3) in classrooms during the winter months and to develop a model to predict such exposures based on ambient weather conditions and outdoor UFPs, as well as classroom characteristics such as size, temperature, relative humidity, and carbon dioxide levels. In total, UFP count data were collected on 60 occasions in 37 occupied classrooms at one elementary school and one secondary school in Pembroke, Ontario. On average, outdoor UFP levels exceeded indoor measures by 8989 cm −3 (95% confidence interval (CI): 6382, 11 596), and classroom UFP counts were similar at both schools with a combined average of 5017 cm −3 (95% CI: 4300, 5734). Of the variables examined only wind speed and outdoor UFPs were important determinants of classrooms UFP levels. Specifically, each 10 km/h increase in wind speed corresponded to an 1873 cm −3 (95% CI: 825, 2920) decrease in classroom UFP counts, and each 10 000 cm −3 increase in outdoor UFPs corresponded to a 1550 cm −3 (95% CI: 930, 2171) increase in classroom UFP levels. However, high correlations between these two predictors meant that the independent effects of wind speed and outdoor UFPs could not be separated in multivariable models, and only outdoor UFP counts were included in the final predictive model. To evaluate model performance, classroom UFP counts were collected for 8 days at two new schools and compared to predicted values based on outdoor UFP measures. A moderate correlation was observed between measured and predicted classroom UFP counts ( r=0.63) for both schools combined, but this relationship was not valid on days in which a strong indoor UFP source (electric kitchen stove) was active in schools. In general, our findings suggest that reasonable estimates of classroom UFP counts may be obtained from outdoor UFP data but that the accuracy of such estimates are limited in the presence of indoor UFP sources.
Read full abstract