In this paper, we are concerned with the existence of least energy sign-changing solutions for the following fractional Kirchhoff problem with logarithmic and critical nonlinearity: a+b[u]s,pp(-Δ)psu=λ|u|q-2uln|u|2+|u|ps∗-2uinΩ,u=0inRN\\Ω,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\left( a+b[u]_{s,p}^p\\right) (-\\Delta )^s_pu = \\lambda |u|^{q-2}u\\ln |u|^2 + |u|^{ p_s^{*}-2 }u &{}\\quad \\text {in } \\Omega , \\\\ u=0 &{}\\quad \\text {in } {\\mathbb {R}}^N{\\setminus } \\Omega , \\end{array}\\right. \\end{aligned}$$\\end{document}where N >sp with s in (0, 1), p>1, and [u]s,pp=∬R2N|u(x)-u(y)|p|x-y|N+psdxdy,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned}{}[u]_{s,p}^p =\\iint _{{\\mathbb {R}}^{2N}}\\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy, \\end{aligned}$$\\end{document}p_s^*=Np/(N-ps) is the fractional critical Sobolev exponent, Omega subset {mathbb {R}}^N(Nge 3) is a bounded domain with Lipschitz boundary and lambda is a positive parameter. By using constraint variational methods, topological degree theory and quantitative deformation arguments, we prove that the above problem has one least energy sign-changing solution u_b. Moreover, for any lambda > 0, we show that the energy of u_b is strictly larger than two times the ground state energy. Finally, we consider b as a parameter and study the convergence property of the least energy sign-changing solution as b rightarrow 0.