The standard far-field approximation to the Kirchhoff formula for the field scattered by a flat metallic plate <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</tex> of arbitrary shape is given by a certain surface (double) integral. This double integral can be reduced to a line integral evaluated around the boundary of S. Moreover, if <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</tex> is a polygon, this line integral can be reduced to a closed form expression involving no integrations at all. The use of such line integral representations can easily reduce the costs of numerical calculation by orders of magnitude. If the integrands are to be sampled <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</tex> times per wavelength to achieve an acceptable degree of precision, and if <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</tex> is the area of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</tex> , then the numerical evaluation of the double integral requires <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p^{2}A/\lambda^{2}</tex> functional evaluations whereas the line integral only requires <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p\sqrt{A/\lambda^{2}}</tex> . If <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</tex> is a polygon with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</tex> vertices, then only <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2N</tex> functional evaluations are required to evaluate the closed form expression with no quadrature error at all.
Read full abstract