The purpose of this paper is to reveal the influence of dissipation on travelling wave solutions of the generalized Pochhammer–Chree equation with a dissipation term, and provides travelling wave solutions for this equation. Applying the theory of planar dynamical systems, we obtain ten global phase portraits of the dynamic system corresponding to this equation under various parameter conditions. Moreover, we present the relations between the properties of travelling wave solutions and the dissipation coefficient r of this equation. We find that a bounded travelling wave solution appears as a bell profile solitary wave solution or a periodic travelling wave solution when r= 0; a bounded travelling wave solution appears as a kink profile solitary wave solution when |r| > 0 is large; a bounded travelling wave solution appears as a damped oscillatory solution when |r| > 0 is small. Further, by using undetermined coefficient method, we get all possible bell profile solitary wave solutions and approximate damped oscillatory solutions for this equation. Error estimates indicate that the approximate solutions are meaningful.
Read full abstract