Pristine single-walled carbon nanotubes (SWCNTs) typically exhibit limited sensitivity due to the low charge transfer dynamics between nanotubes and gas molecules. Among various enhancement methods, the Fermi level regulation proves to be effective in promoting the charge transfer between SWCNTs and gas molecules, consequently improving the sensing performance. Herein, we firstly report a non-destructive method to regulate the Fermi level of SWCNTs through doping metal chlorides, and the interfacial charge transfer between SWCNTs and different metal chlorides has been well investigated by combining Raman shift with X-ray photoelectron spectroscopy. Experimental results reveal that the interfacial charge transfer dynamics determine the sensing properties of SWCNTs doped with chlorides. The as-fabricated FeCl3-doped SWCNT sensors exhibit a high response of 196.9 % in response to 100 ppb NO2 gas with excellent selectivity. The Kelvin probe force microscope (KPFM) results directly prove the doping effect of metal chlorides due to the shift down of Fermi level of SWCNTs after doping FeCl3. Our work not only proposes a novel method to controllably regulate the Fermi level of SWCNTs but also provides a guidance for high-performance SWCNT-based sensing devices.
Read full abstract