In this study, we investigate the capabilities of magnetohydrodynamic bioconvective micropolar nanofluids, considering the impact of Soret and Dufour effects using a non-similarity analysis. Our objective is to forecast the complex heat and mass transfer phenomena observed in both biological and industrial systems. In recent years, notable progress in energy applications has spurred our inquiry and exploration. To augment thermal conductivity and explore potential biocompatibility, we utilize blood as the base fluid, incorporating silver Ag\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left({\ ext{Ag}}\\right)$$\\end{document} and copper oxide (CuO)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\ ext{CuO}})$$\\end{document}. This distinctive configuration offers improved control over thermal properties and supports the exploration of advanced applications across various domains. In our analysis, we also consider factors such as viscous dissipation, the influences of Soret and Dufour effects, the existence of a magnetic field, and the occurrence of heat generation. The governing PDEs and their corresponding boundary conditions are transformed into dimensionless form through the use of suitable non-similar transformations. The outcomes generated by the modified model are obtained through the application of a local non-similarity approach, extended up to the second degree of truncation, and integrated with a finite difference code (bvp4c). Furthermore, the effects of different factors on fluid flow, micro-rotation, heat transfer, volume fraction, and microorganism properties in the analyzed flow scenarios are demonstrated and examined through visual representations, following the attainment of satisfactory agreement between the obtained results and those reported in prior studies. The tables are designed to present numerical variations for the drag coefficient and Nusselt number. A comparative analysis is conducted on previously published work, despite certain limitations, in order to evaluate the accuracy of the numerical scheme. It can be shown that the material parameter K\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K$$\\end{document} has two effects on micropolar fluid dynamics: it increases the micro-rotation profile, which leads to higher fluid stiffness, and it reduces the velocity profile in response to an angled magnetic field. Furthermore, in bio-convective micropolar fluid, greater K\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K$$\\end{document} values are correlated with an elevated temperature profile, showing enhanced heat transfer efficiency via increased fluid speed and kinetic energy production. The velocity profiles in bioconvective micropolar fluids rise with higher magnetic field values (M)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(M)$$\\end{document}, highlighting the significance of magnetic field orientations for a thorough comprehension of the behavior of fluids in these systems. Increasing the Dufour effect (Du)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\ ext{Du}})$$\\end{document} raises the temperature profile, whereas increasing the Soret effect (Sr)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\ ext{Sr}})$$\\end{document} lowers the concentration profile. Furthermore, increasing the bio-convective Lewis numbers (Le)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\ ext{Le}})$$\\end{document} results in larger concentrations of moving microorganisms, but increasing the Peclet number (Pe)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\ ext{Pe}})$$\\end{document} results in a drop in microbe concentrations. The main focus of our study is to devise unique transformations customized to address the intricacies of the specific problem under investigation. These transformations aim to produce precise and efficient outcomes, offering valuable insights for future research in the realm of nanofluid flows, particularly concerning pressure ulcer problems.
Read full abstract