Swimming coaches know that a swimmer’s assessment must be specific and ecological. Thus, it is critical to select and employ adequate methodologies. The tethered swimming method can be useful and valid, in addition to being simple to apply. Regular use of this methodology can give coaches tools to intervene with their swimmers and increase performance. The main objective of this manuscript was to analyze the potential for measuring the propulsive forces exerted in water as a biomechanical tool for evaluating and training competitive swimmers. The key results demonstrated that this methodology allows (i) the assessment of upper limb bilateral kinetic asymmetries; (ii) the evaluation of the contribution of the upper and lower limb actions, inferring about the (un)balance between strength and coordination; (iii) the examination of the relationship between the intracyclic variations in speed and force; (iv) the evaluation of the effective application of force to the speed of high-level swimmers. Furthermore, this manuscript suggests advances using mathematical modeling and artificial intelligence (AI) that will provide significant insights into swimming performances. AI developments will promote its integration into sports optimization, and swimming will be no exception.
Read full abstract